(A) CONOSCENZA TERMINOLOGICA

Dare una breve descrizione dei termini introdotti:

- Tavoletta grafica
- Scanner
- Plotter
- Video grafico
- CAM
- CAD
- Realtà virtuale
- Tecnica WYSIWYG

- Computer graphics
- Computer vision
- Grafica bitmap
- Grafica vettoriale
- Metodo *true color*Risoluzione
- Compressione

(B) CONOSCENZA E COMPETENZA

Rispondere alle seguenti domande producendo anche qualche esempio

B1) Conoscenza

- 1. Quali sono le principali applicazioni della grafica al computer?
- 2. Qual è la differenza tra Computer Graphics e Computer Vision?
- 3. Quali sono i principali dispositivi grafici di input?
- 4. Quali sono i principali dispositivi grafici di output?
- 5. Che differenza c'è tra un'immagine bitmap e un'immagine vettoriale?

B2) Competenza

- 1. Che differenza c'è tra applicazioni di Computer Graphics e di Computer Vision?
- 2. Quali sono le tecniche per gestire i colori in modalità bitmap?
- 3. Perché per il colore conviene l'uso della palette rispetto al true color?
- 4. Che relazione c'è tra risoluzione e contenuto informativo?
- 5. Che relazione c'è tra risoluzione e memoria utilizzata?

(C) ESERCIZI DI COMPRENSIONE

1.	. I dispositivi grafici di input sono la, che co manualmente un dispositivo su una apposito piano, lo			
	formato, successivamente modificabile o riproducit	ile.		
2.	. I dispositivi grafici di sono il, che dispon	e di un modulo continuo di, su cui scorre una penna		
	scrivente che si muove in senso e			
3.	La sigla CAM significae	l indica le tecniche e i macchinari usati per la di		
	oggetti industriali. La sigla CAD significa	ed indica le tecniche e gli strumenti per la		
4	di parti meccaniche, in architettura, nel desig			
4.	La Computer Graphics (CG) è quel settore dell'Informatica che si occupa delladi immagini, ossia delle tecniche per la loro realizzazione. La Computer Vision (CV), invece, è quel settore dell'Informatica che si occupa			
_	della di immagini, ossia del riconoscimento dell			
Э.	Il metodo comune per rappresentar un'immagine è la grafica, in cui l'immagine viene considerata formata da, ciascuno con le proprie caratteristiche di e di In questo tipo di rappresentazione, il colore			
	può essere codificato in tre modi: a e a			
6.	. Associare ad ogni termine nella colonna di sinistra, la su	a definizione, tra quelle indicate nella colonna di destra,		
	scrivendo la lettera corrispondente nella casella.			
	1 Risoluzione A	Metodo true color		
	2 Colore RGB	Modalità di rappresentazione grafica		
	3 Bitmap	Metodo indicizzato		
	4 Palette	Densità dei pixel		
7	Completare la seguente tabella, indicando l'intensità del co	lore mancante :		

7. Completare la seguente tabella, indicando i intensità dei colore mancante.

Componente	R	G	В
Nero			
Bianco			
Rosso			
Verde			
Blu			
Verde			

8. Per ciascuna delle seguenti frasi, indicare se vera o falsa:

	Vero	Falso
La compressione si misura in dot / inch		
La risoluzione è la misura della qualità di un'immagine		
Il metodo indicizzato serve per la codifica del colore		
Il metodo true color serve ad economizzare memoria		
La compressione comporta sempre perdita di informazione		

(D) ESERCIZI DI APPLICAZIONE

 Esercizio risolto. Consideriamo un monitor con 1280 pixel in orizzontale e 1024 pixel in verticale. In totale si hanno 1.310.720 pixel.

Supponendo che la larghezza in pollici (1pollice =2,54 cm) della base sia 13,3 pollici. La risoluzione del monitor è 1280 pixel / 13,3 pollici = 96,2 pixel per pollice.

Dividendo la lunghezza di un pollice in millimetri per il numero di pixel in esso contenuto è possibile trovare la dimensione del pixel (**dot pitch**):

Cambiando modalità grafica e passando a 1024×768 la risoluzione diventa 1024 pixel / 13,3 pollici = 77 pixel per pollice. Non occorre fare lo stesso calcolo in verticale perché il pixel è quadrato. In questo caso la dimensione del pixel vale

$$25,4$$
mm / $77 = 0,33$ mm.

- 2. **Esercizio risolto**. Se si conosce il *dot pitch* e le dimensioni fisiche (larghezza ed altezza) del video, si possono calcolare il numero massimo di *pixel* orizzontali e verticali che il monitor può visualizzare. Si divide la misura di un pollice (25,4 mm) per il *dot pitch* calcolando così la risoluzione massima. Si moltiplica poi tale risoluzione per il numero di pollici verticali ed orizzontali del monitor in esame calcolando così le rispettive dimensioni in *pixel*.
- 3. Tenendo presente che la dimensione in pollici di un monitor ne indica la misura della diagonale, e che il rapporto tra altezza e base è in genere 4/3, calcolare la base e l'altezza in pollici dei monitor indicati in tabella. Supponendo che il *dot pitch* sia 0.39 mm, calcolare la risoluzione (quarta colonna) riportare nelle due ultime colonne la risoluzione supportata.

Misura	Base	Altezza	Risoluzione	Ris. vertic.
12"				
14"				
15"				
17"				
19"				

- 4. Per il monitor a disposizione, calcolarne il **dot pitch**.
- 5. Calcolare il numero di colori nelle seguenti modalità:

Modalità	N° bit	N° colori
Pseudo-color	8	
High-color	16	
True-color	24	

6. Come per l'esercizio precedente, ma supponendo che il dot pitch misuri 0.28 (valore comune).

Misura	Base	Altezza	Ris. orizz	Ris. vertic.
12"				
14"				
15"				
17"				
10"				

- 7. La rappresentazione accurata di una immagine dipende:
 - a. dal numero di pixel (definizione)
 - b. dalla codifica del pixel

e richiede generalmente molta la memoria. Calcolare la memoria occupata nei casi indicati nella tabella seguente:

	Tipo	Definizione	Numero colori	Numero byte
1	Immagine televisiva	720x625	256	
2	SVGA	1024x768	65536	
3	foto	15000x10000	16 milioni	

Si dovrebbe trovare: (1): 440 KB, (2): 1.5 MB, (3): 430 MB.